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Abstract
A central objective of empirical research on treatment response is to inform treatment choice. Unfortunately,
researchers commonly use concepts of statistical inference whose foundations are distant from the problem
of treatment choice. It has been particularly common to use hypothesis tests to compare treatments. Wald’s
development of statistical decision theory provides a coherent frequentist framework for use of sample data
on treatment response to make treatment decisions. A body of recent research applies statistical decision
theory to characterize uniformly satisfactory treatment choices, in the sense of maximum loss relative to
optimal decisions (also known as maximum regret). This article describes the basic ideas and findings,
which provide an appealing practical alternative to use of hypothesis tests. For simplicity, the article focuses
on medical treatment with evidence from classical randomized clinical trials. The ideas apply generally,
encompassing use of observational data and treatment choice in nonmedical contexts.
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1. Introduction

A central objective of empirical research on treatment response
is to inform treatment choice. Identification problems combine
with the necessity of inference from sample data to limit
the informativeness of studies. Unfortunately, researchers
commonly use concepts of statistical inference whose foun-
dations are distant from the problem of treatment choice. It has
been particularly common to use hypothesis tests to compare
treatments.

The Wald (1950) development of statistical decision theory
provides a coherent frequentist framework for use of sample
data on treatment response to make treatment decisions. A
body of recent research applies statistical decision theory to
characterize uniformly satisfactory treatment choices, in the
sense of maximum loss relative to optimal decisions (also known
as maximum regret). This article describes the basic ideas and
findings, which provide an appealing practical alternative to use
of hypothesis tests.

To keep the exposition simple and framed in a familiar set-
ting, I focus on medical treatment with evidence from classical
randomized clinical trials. Trials have long enjoyed a favored
status within evidence-based medicine, often being called the
“gold standard” for collection of data on treatment response. The
influential Cochrane system for grading the quality of evidence
ordinarily reserves its highest rating for evidence from ran-
domized trials (Higgins and Green 2011, Sec. 12.2.1). The drug
approval process of the U.S. Food and Drug Administration
(FDA) ordinarily considers only experimental evidence when
making decisions on drug approval. While I focus on the use of
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trial data in medical decision making, the broad ideas discussed
here are general, encompassing use of observational data and
treatment choice in nonmedical contexts.

Section 2 reviews the use of hypothesis tests to compare
medical treatments and the basic principles of statistical deci-
sion theory. Section 3 describes the recent research on uni-
formly satisfactory treatment choice using trial data. Section 4
concludes.

Readers may be aware that it has become increasingly com-
mon to express concern that evaluation of empirical research
by the outcome of hypothesis tests generates publication bias
and diminishes the reproducibility of findings. See, for exam-
ple, Ioannidis (2005) and Wasserstein and Lazar (2016). This
concern is important, but it is distinct from the theme of the
present article.

The article relates directly to other important issues covered
in the ASA Statement on Statistical Significance and p-Values
(Wasserstein and Lazar 2016). Two of the six Principles of the
Statement are

“3. Scientific conclusions and business or policy decisions
should not be based only on whether a p-value passes a specific
threshold.”

“5. A p-value, or statistical significance, does not measure the
size of an effect or the importance of a result.”

Treatment choice using statistical decision theory is not
based at all on whether a p-value passes a threshold. Statistical
decision theory clearly distinguishes between the statistical
and clinical significance of empirical estimates of treatment
effects.
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2. Background

2.1. Using Hypothesis Tests to Compare Treatments

A long-standing practice in medicine has been to use trial data
to test a specified null hypothesis against an alternative and to
use the outcome of the test to compare treatments. A common
procedure when comparing two treatments in a trial is to view
one as the status quo and the other as an innovation. The usual
null hypothesis is that the innovation is no better than the status
quo and the alternative is that the innovation is better. If the
null hypothesis is not rejected, it is recommended that the status
quo treatment continue to be used in clinical practice. If the
null is rejected, it is recommended that the innovation become
the treatment of choice. This type of test is institutionalized in
the FDA drug approval process, which calls for comparison of
a new drug with a placebo or a previously approved treatment.
Approval of the new drug normally requires rejection of the null
hypothesis of zero average treatment effect in two independent
trials (Fisher and Moyé 1999).

The convention has been to perform a test that fixes the
probability of rejecting the null hypothesis when it is correct,
the probability of a Type I error. Then sample size determines
the probability of rejecting the alternative hypothesis when it is
correct, the probability of a Type II error. The power of a test
is defined as one minus the probability of a Type II error. The
convention has been to choose a sample size that yields specified
power at some value of the effect size deemed clinically impor-
tant. For example, International Conference on Harmonisation
(1999) has provided guidance for the design and conduct of
trials evaluating pharmaceuticals, stating (p. 1923)

Conventionally the probability of type I error is set at 5%
or less or as dictated by any adjustments made necessary
for multiplicity considerations; the precise choice may be
influenced by the prior plausibility of the hypothesis under
test and the desired impact of the results. The probability of
type II error is conventionally set at 10% to 20%.

Manski and Tetenov (2016) observed that there are several
reasons why hypothesis testing may yield unsatisfactory results
for medical decisions and other forms of treatment choice.
These include

1. Use of Conventional Asymmetric Error Probabilities: It has
been standard to fix the probability of Type I error at 5%
and the probability of Type II error at 10–20%. The theory
of hypothesis testing gives no rationale for selection of these
conventional error probabilities. It gives no reason why a clin-
ician concerned with patient welfare should find it reasonable
to make treatment choices that have a substantially greater
probability of Type II than Type I error.

2. Inattention to Magnitudes of Losses to Welfare When Errors
Occur: A clinician should care about more than the proba-
bilities of Type I and II error. He should care as well about
the magnitudes of the losses to patient welfare that arise
when errors occur. A given error probability should be less
acceptable when the welfare difference between treatments is
larger, but the theory of hypothesis testing does not take this
into account.

3. Limitation to Settings with Two Treatments: A clinician often
chooses among several treatments and many clinical trials

compare more than two treatments. Yet the standard theory
of hypothesis testing only contemplates choice between two
treatments. Statisticians have struggled to extend it to deal
sensibly with comparisons of multiple treatments.

The third issue is well-appreciated, but the first two are often
overlooked. A simple example shows why they may matter for
patient care.

2.1.1. Example
Suppose that a typically terminal form of cancer may be treated
by a status quo treatment or an innovation. It is known from
experience that mean patient life span with the status quo
treatment is 1 year. Prior to use of the innovation, medical
researchers see two possibilities for its effectiveness. It may be
less effective than the status quo, yielding a mean life span of
only 1/3 of a year, or it may be much more effective, yielding a
mean life span of 5 years.

Suppose that a classical randomized trial is performed to
learn the effectiveness of the innovation. Let the trial data be
used to perform a conventional hypothesis test comparing the
innovation and the status quo. The null hypothesis is that the
innovation is no more effective than the status quo and the alter-
native is that the innovation is more effective. The probability of
a Type I error is set at 0.05 and that of a Type II error is 0.20. The
test result is used to choose between the treatments.

A Type I error occurs with frequentist probability 0.05 and
reduces mean patient life span by 2/3 of a year (1 year minus 1/3
year). A Type II error occurs with frequentist probability 0.20
and reduces mean patient life span by 4 years (5 years minus 1
year). Thus, use of the test to choose between the status quo and
the innovation implies that society is willing to tolerate a large
(0.20) chance of a large welfare loss (4 years) when making a
Type II error, but only a small (0.05) chance of a small welfare
loss (2/3 of a year) when making a Type I error. The theory of
hypothesis testing does not motivate this asymmetry.

2.2. Principles of Statistical Decision Theory

2.2.1. Basic Ideas
The standard formalization of decision making under uncer-
tainty supposes that a decision maker must choose among a set
of feasible actions. The welfare achieved by an action depends
on an unknown feature of the environment, called the state
of nature. The decision maker wants to choose an action that
maximizes welfare, but he cannot do this with certainty because
the state of nature is unknown. The decision maker lists all
states of nature that he believes could possibly occur. This list,
the state space, expresses partial knowledge. The larger the state
space, the less the decision maker knows about the outcomes of
actions.

For example, the decision maker may be a clinician and
the actions may be treatments for a patient. A state of nature
may characterize how a patient would respond to alternative
treatments, which may be incompletely known. Welfare may
be a health outcome of interest, perhaps patient life span or
quality of life, that would occur when a specified treatment is
administered to a patient. The clinician might ideally want to
choose a treatment that optimizes the patient’s health outcome
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but, having incomplete knowledge of treatment response, he
cannot do this with certainty.

Suppose that a sampling process generates observable sample
data that are informative about the true state; for example, data
on how each member of a sample of patients has responded
to the assigned treatment. Wald (1950) considered the gen-
eral problem of using such sample data to make decisions. He
posed the task as choice of astatistical decision function, which
maps potentially available data into a choice among the feasible
actions. Wald’s seminal book is abstract, making it a difficult
read. Ferguson (1967), Berger (1985), and Parmigiani and Inoue
(2009) provide comprehensive expositions.

Wald recommended ex ante evaluation of statistical deci-
sion functions as procedures applied as the sampling process
is engaged repeatedly to draw independent data samples. The
idea of a procedure transforms the original statistical problem
of induction from a single sample into the deductive problem of
assessing the probabilistic performance of a statistical decision
function across realizations of the sampling process. Thus, the
theory is frequentist.

Wald proposed that the decision maker evaluate a statistical
decision function by the mean welfare it yields across realiza-
tions of the sampling process. His presentation differed semanti-
cally from the one that I use to describe treatment choice in that
he defined loss to be the negative of welfare, took the objective
to be minimization of loss rather than maximization of welfare,
and used the term risk to denote mean loss across realizations
of the sampling process. With these semantic distinctions, he
prescribed a three-step decision process

1. Specify the set of feasible actions, the loss (or welfare) func-
tion, and the state space. These basic concepts of decision
theory are context specific. The set of feasible actions is com-
monly considered to be predetermined. The loss function
and the state space are subjective. The former formalizes what
the decision maker wants to achieve and the latter expresses
what states of nature he believes could possibly occur.

2. Eliminate inadmissible statistical decision functions. A deci-
sion function is inadmissible if there exists another that yields
at least as good mean sampling performance in every state of
nature and strictly better mean performance in some state.

3. Use some criterion to choose an admissible statistical deci-
sion function. Wald focused on the minimax criterion and on
minimization of a subjective mean of the risk function (called
Bayes risk). Savage (1951) proposed minimax regret.

2.2.2. Decision Criteria
What are reasonable ways to choose an admissible decision
function? The Bayesian approach is particularly well known. It
has been common to think of the Bayesian process of trans-
forming a prior into a posterior distribution as antithetical
to frequentist statistics, but Wald provided a clear frequentist
perspective on Bayes decisions. He showed that minimization
of Bayes risk, a frequentist decision criterion, yields the same
decisions as would occur if one performs Bayesian inference,
combining the prior distribution with the data to form a pos-
terior subjective distribution, and then chooses an action to
minimize the posterior mean of expected loss. Berger (1985,
Sec. 4.4.1) gives an accessible proof.

Bayesian decision making is compelling when one feels
able to place a credible subjective prior distribution on the
state space. There exists a considerable body of work ranging
across multiple disciplines that develops methods to help
persons conceptualize uncertainty and express themselves in
subjective probabilistic terms. See, for example, Savage (1971),
Koriat, Lichtenstein, and Fischhoff (1980), Morgan and Henrion
(1990), Manski (2004b), and Garthwaite, Kadane, and O’Hagan
(2005).

Nevertheless, Bayesians have long struggled to provide guid-
ance on specification of priors to be used in evidence-based
medicine and the matter continues to be controversial. See, for
example, the spectrum of views regarding Bayesian analysis of
randomized trials expressed by the authors and discussants of
Spiegelhalter, Freedman, and Parmar (1994). The controversy
suggests that inability to express a credible prior is common in
actual decision settings.

When one finds it difficult to assert a credible subjective
distribution, Bayesian statisticians who believe it essential to use
a probability distribution to express uncertainty may suggest use
of some default distribution that is variously called a “reference”
or “conventional” or “objective” prior; see, for example, Berger
(2006). However, there is no consensus on what prior should
play this role. The choice made matters for decision making.

An alternative is to abandon the notion that one must use a
probability distribution to express uncertainty. In the absence
of a prior, Wald argued that a reasonable way to act is to use a
decision criterion that achieves uniformly satisfactory results,
whatever the true state of nature may be. There are multiple
ways to formalize the idea of uniformly satisfactory results. The
two most commonly studied are embodied in the minimax and
minimax-regret (MR) criteria.

The minimax criterion chooses an action that minimizes
the maximum risk that might possibly occur, across all feasible
states of nature. The minimax-regret criterion considers each
state of nature and computes the incremental risk that occurs
if one chooses a specified action rather than the one that min-
imizes risk in this state. This quantity, called regret, measures
the nearness to optimality of the specified action in the state of
nature. The decision maker must choose without knowing the
true state. To achieve a uniformly satisfactory result, he com-
putes the maximum regret of each action; that is, the maximum
distance from optimality that the action would yield across all
possible states of nature. The MR criterion chooses an action
that minimizes maximum regret.

The minimax and MR criteria are sometimes confused with
one another, but they yield the same choice only in certain
special cases. Although the minimax criterion considers only
the worst outcome that an action may yield, MR considers the
worst outcome relative to what is achievable in a given state
of nature. Savage (1951) distinguished the minimax criterion
sharply from MR, writing that the former criterion is “ultra-
pessimistic” while the latter is not. Maximum regret quantifies
how uncertainty—lack of knowledge of the true state of nature—
potentially diminishes the quality of decisions.

It is important to understand that use of the minimax or
the MR criteria does not eliminate all subjectivity in decision
making. As discussed earlier, decision theory begins with speci-
fication of a welfare function and a state space, both of which are
subjective. Bayes decision theory goes a step further by placing a
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subjective distribution on the state space. The minimax and MR
criteria do not embrace this further element of subjectivity, but
they still require the decision maker to specify a welfare function
and state space.

The reader may have noticed that, to introduce this dis-
cussion, I asked what are “reasonable” decision criteria rather
than what is an “optimal” criterion. Statistical decision theorists
recognized from the outset that there is no singularly optimal
way to choose an admissible decision function. There at most are
reasonable ways. Wald (1950), who was particularly concerned
with decision making in the absence of a prior distribution on
the state space, motivated his focus on the minimax criterion in
part by stating (p. 18)

a minimax solution seems, in general, to be a reasonable solu-
tion of the decision problem when an a priori distribution
…does not exist or is unknown to the experimenter.

Ferguson (1967) wrote (p. 28)

It is a natural reaction to search for a ‘best’ decision rule, a
rule that has the smallest risk no matter what the true state
of nature. Unfortunately, situations in which a best decision
rule exists are rare and uninteresting. For each fixed state of
nature there may be a best action for the statistician to take.
However, this best action will differ, in general, for different
states of nature, so that no one action can be presumed best
overall.

He went on to write (p. 29): “A reasonable rule is one that is
better than just guessing.”

2.2.3. Some History, Post Wald
The Wald framework has breathtaking generality. In principle,
it enables comparison of all statistical decision functions whose
risk functions exist. It enables comparison of alternative sam-
pling processes as well as decision rules. It uses no asymptotic
approximations. It applies whatever information the decision
maker may have. The state space may be finite dimensional or
larger; that is, nonparametric. The true state of nature may be
point or partially identified. Settings with partial identification
are ones where the sampling process generating the data incom-
pletely reveals the true state asymptotically; see Manski (2003,
2007a).

Given the appeal of statistical decision theory, one might
anticipate that it would play a central role in modern statis-
tics. However, this has not occurred. After publication of Wald
(1950), a surge of important extensions and applications fol-
lowed in the 1950s. Much research focused on best point predic-
tion under square loss with sample data, analysis of which began
with Hodges and Lehmann (1950). In this important case, regret
is mean square error and the MR criterion yields a predictor that
minimizes maximum mean square error across the state space.

However, this period of rapid development closed by the
1960s, with the exception of Bayesian statistical decision the-
ory. Bayesian analysis has continued to develop, but as a self-
contained field of study disconnected from the Wald frequentist
framework. Recent research in Bayesian statistics has focused
more on the computational problem of transformation of priors
into posteriors than on use of posteriors in decision making.

Why did statistical decision theory lose momentum long
ago? One reason may have been the technical difficulty
of the subject. Wald’s ideas are easy to describe abstractly,
but applying them can be analytically and computationally
demanding. Determination of admissible decision functions
and minimax/minimax-regret rules is often difficult. Another
reason may have been diminishing interest in decision making
as the motivation for analysis of sample data. Modern statisti-
cians tend to view their objectives as estimation and hypothesis
testing rather than decision making.

I cannot be sure what role these or other reasons played in
the vanishing of statistical decision theory from statistics in the
latter part of the twentieth century. However, the near absence of
the subject in mainstream journals and textbooks of the period
is indisputable. I think this is unfortunate. The recent research
described in the next sections aims to reinvigorate statistical
decision theory, focusing on the important applied problem of
treatment choice. Other recent research, not described here,
provides new analysis of best point prediction under square loss
when the sampling process is afflicted with missing data or other
problems of imperfect data quality; see Dominitz and Manski
(2017).

3. Recent Work on Statistical Decision Theory for
Treatment Choice

Bayesian statistical decision theory has long been available to
design trials and to choose treatments with trial data. DeGroot
(1970) provides a classical treatise on the subject. Canner (1970),
Spiegelhalter, Freedman, and Parmar (1994), Cheng, Su, and
Berry (2003), and Spiegelhalter (2004) study various aspects.
However, as mentioned above, Bayesians have struggled to pro-
vide guidance on specification of priors and the matter contin-
ues to be controversial. Perhaps as a result, Bayesian analysis is
well known but seldom used in evidence-based medicine. A lim-
ited exception is that the FDA has provided guidance permitting
the use of Bayesian statistics in the design and analysis of clinical
trials evaluating new medical devices; see U. S. Food and Drug
Administration (2010).

I describe here a recent body of research that avoids specifi-
cation of priors and instead studies uniformly satisfactory treat-
ment choice, using maximum regret to measure performance
across states of nature. Contributions to this emerging literature
include Manski (2004a; 2005; 2007a; 2007b), Schlag (2006),
Hirano and Porter (2009), Stoye (2009; 2012), Tetenov (2012),
Manski and Tetenov (2016), and Kitagawa and Tetenov (2018).

The recent research supposes that the objective of treatment
choice is to maximize a social welfare function that sums treat-
ment outcomes across a population of patients that may have
heterogeneous treatment response. For example, the objective
may be to maximize the five-year survival rate in a population of
cancer patients or mean life span in a population with a chronic
disease. In this setting, a statistical decision function uses the
data to choose an allocation of patients to treatments. Using
terminology introduced in Manski (2004a), such a function has
been called a statistical treatment rule (STR).

The mean sampling performance of an STR across repeated
samples is its expected welfare. This term means the negative
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of Wald’s risk and is used because the objective is to maximize
welfare rather than minimize loss. Given that the objective is
to maximize rather than minimize a function, the minimax
decision criterion becomes maximin instead. The MR criterion
remains as earlier except that regret in a state of nature now is the
maximum welfare achievable in that state minus the expected
welfare of a specified STR.

In what follows, Section 3.1 explains why the recent work
has measured the performance of STRs by maximum regret.
Section 3.2. discusses treatment choice with existing trial data.
Section 3.3 considers the design of trials.

3.1. Measuring Performance by Maximum Regret

In the absence of a prior distribution on the state space, practical
and conceptual reasons motivate measurement of the perfor-
mance of STRs by maximum regret across the state space, rather
than by minimum expected welfare. I explain here.

3.1.1. Practical Appeal
From a practical perspective, it has been found that MR deci-
sions behave more reasonably than do maximin ones in the
context of treatment choice. In common settings of treatment
choice with trial data on outcomes that take a bounded range
of values, it has been found that the MR rule is well approx-
imated by the empirical success (ES) rule, which chooses the
treatment with the highest observed average outcome in the
trial. The ES rule provides a simple and plausible way to use
the results of a trial. The performance of the ES rule from the
perspective of maximum regret was initiated by Manski (2004a).
Subsequently, Schlag (2006) and Stoye (2009) showed that this
rule either exactly or approximately minimizes maximum regret
in common settings with two treatments when sample size is
moderate. Hirano and Porter (2009) showed that the ES rule is
asymptotically optimal.

In contrast, the maximin rule commonly ignores the trial
data, whatever they may be. When Savage (1951) stated that
the minimax criterion is “ultrapessimistic,” he went on to write
(p. 63): “it can lead to the absurd conclusion in some cases
that no amount of relevant experimentation should deter the
actor from behaving as though he were in complete ignorance.”
Savage did not flesh out this statement but it is easy to show that
this occurs with trial data. Manski (2004a) provides a simple
example that will be discussed in Section 3.2.

3.1.2. Conceptual Appeal
The conceptual appeal of using maximum regret to measure
performance is that maximum regret quantifies how lack of
knowledge of the true state of nature diminishes the quality
of decisions. While the term “maximum regret” has become
standard in the literature, it is important to keep in mind that
this term is a shorthand for the maximum suboptimality of a
decision criterion across the feasible states of nature. An STR
with small maximum regret is uniformly near-optimal across all
states.

Maximum regret is well-defined in general settings with mul-
tiple treatments and when patients have heterogeneous observ-
able covariates that may be used to differentiate treatment.

However, the concept is especially transparent when there are
two treatments and the members of the patient population
are observationally identical, all having the same observable
covariates.

Suppose there are two feasible treatments, say A and B. In
a state of nature where A is better, the regret of an STR is the
product of the probability across repeated samples that the rule
commits a Type I error (choosing B) and the magnitude of the
loss in expected welfare that occurs when choosing B. Similarly,
in a state where B is better, regret is the probability of a Type II
error (choosing A) times the magnitude of the loss in expected
welfare when choosing A.

Recall the critique in Section 2.1 of the conventional use of
hypothesis testing to choose a treatment. I called attention to the
asymmetric treatment of Type I and Type II error probabilities
and the inattention to magnitudes of losses when errors occur.
Evaluating treatment rules by regret overcomes both problems.
Regret considers Type I and II error probabilities symmetrically
and it measures the magnitudes of the losses that errors produce.

3.1.3. Example
To illustrate, consider again the example of Section 2.1.1, in
which a conventional hypothesis test is used as an STR to choose
between a status quo treatment for cancer and an innovation.
There are two feasible states of nature in the example, with the
innovation yielding mean life span of 1/3 year in one state and 5
years in the other. In the first state, the regret of this conventional
“test rule” equals 1/30 of a year; that is, a 0.05 chance of a Type
I error times a 2/3 of a year reduction in mean life span with
improper choice of the innovation. In the second state, the regret
of the test rule equals 4/5 of a year; that is, a 0.20 chance of a Type
II error times a 4-year reduction in mean life span with improper
choice of the status quo. Thus, the maximum regret of the test
rule is 4/5 of a year.

Rather than use the conventional test rule to choose between
the status quo and the innovation, one could seek an STR that
has smaller maximum regret. Given the available trial data, a
simple option would be to reverse the conventional probabilities
of Type I and Type II; thus, one might use a test with a 0.20
chance of a Type I error and a 0.05 chance of a Type II error.
In the first state, the regret of this unconventional test rule
STR equals 2/15 of a year; that is, a 0.20 chance of a Type I
error times a 2/3 of a year reduction in mean life span with
improper choice of the innovation. In the second state, the regret
of the unconventional test rule equals 1/5 of a year; that is,
a 0.05 chance of a Type II error times a 4-year reduction in
mean life span with improper choice of the status quo. Thus,
the maximum regret of the unconventional test rule is 1/5 of a
year.

In this example, the unconventional test rule delivers much
smaller maximum regret than does the conventional test rule.
There may exist other STRs that perform even better.

3.2. Treatment Choice With Existing Trial Data

To move beyond verbal discussion and examples, I now for-
malize treatment choice as a statistical decision problem in the
relatively simple setting of a classical trial with two treatments
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and a population of observationally identical patients. The pre-
sentation in this section draws substantially on Manski (2007,
Chap. 12). The research literature cited earlier also studies more
general and complex settings with multiple treatments, patients
who have heterogeneous observable covariates, and imperfect
trials that only partially identify treatment response.

3.2.1. General Analysis
Suppose that a health planner must assign treatment A or B to
each member of patient population J. Each patient j ∈ J has
response function yj(•): T → Y mapping treatments t ∈ T into
individual outcomes yj(t) ∈ R. Let P denote the distribution of
treatment response in the population.

The members of the population may respond heteroge-
neously to treatment, but they are observationally identical
to the planner. For any δ ∈ [0, 1], the planner can allocate a
fraction δ of patients to treatment B and 1 − δ to A. The planner
wants to choose δ to maximize an additive welfare function

U(δ, P) = E[y(A)](1 − δ) + E[y(B)]δ
= α(1 − δ) + βδ = α + (β − α)δ, (1)

where α ≡ E[y(A)] and β ≡ E[y(B)] are the mean outcomes
if everyone were to receive treatment A or B, respectively. The
quantity β − α is the average treatment effect (ATE) in the
population. It is optimal to set δ = 1 if the ATE is positive and
δ = 0 if the ATE is negative. The problem of interest is treatment
choice when incomplete knowledge of P makes it impossible to
determine the sign of the ATE.

Suppose that sample data are available. Let Q be the sampling
distribution and � be the sample space. For example, the data
may be treatment response observed in a randomized trial. A
STR is a function δ(•) : � → [0, 1] that maps sample data into
a treatment allocation. The welfare realized with δ and data ψ is
the random variable

U(δ, P, ψ) = α + (β − α)δ(ψ). (2)

The state space [(Ps, Qs), s ∈ S] is the set of (P, Q) pairs that the
planner deems possible. Expected welfare in state s, the mean
sampling performance of rule δ in this state, is

W(δ, Ps, Qs) = αs + (βs − αs)Es[δ (ψ)]. (3)

Here Es[δ(ψ)] ≡ ∫� δ(ψ)dQs(ψ) is the expected allocation of
patients to treatment B, across repeated samples.

Rule δ is admissible if there exists no rule δ′ such that W(δ′,
Ps, Qs) ≥ W(δ, Ps, Qs) for all s ∈ S and W(δ′, Ps, Qs) >W(δ, Ps,
Qs) for some s. The Bayes, maximin, and MR rules are as follows:

Bayes rule: max
δ∈[0, 1]

∫
S

W(δ, Ps, Qs)dπ(s), (4)

where π is a subjective distribution on the state space.

Maximin rule : max
δ∈[0, 1]

min
s∈S

W(δ, Ps, Qs). (5)

Minimax-regret rule : min
δ∈[0, 1]

max
s∈S

[max(αs, βs) − W(δ, Ps, Qs)].
(6)

3.2.2. Illustration: Choice Between a Status Quo
Treatment and an Innovation When Outcomes Are
Binary

To illustrate in perhaps the simplest nontrivial setting, let the
outcomes y be binary, taking the value zero if treatment fails
and one if it succeeds. Let A be a status quo treatment and B
be an innovation. Suppose that the planner knows the success
probability α ≡ P[y(A) = 1] of the status quo treatment but
not the success probability β ≡ P[y(B) = 1] of the innovation.
The planner wants to choose treatments to maximize the success
probability.

A randomized trial is performed to learn about outcomes
under the innovation, with N subjects randomly drawn from
the population and assigned to treatment B. The observed trial
outcomes are that n subjects realize outcome y = 1 and N − n
realize y = 0. In this setting, N indexes the sampling process and
the number n of experimental successes is a sufficient statistic
for the data.

The feasible STRs are functions δ(•): [0, …, N] → [0, 1]
that map the number of experimental successes into a treatment
allocation. The expected welfare of rule δ is

W(δ, P, N) = α + (β − α)E[δ(n)]. (7)

n is distributed binomial B[β , N], so

E[δ(n)] =
N∑

i=0
δ(i)f (n = i; β , N), (8)

where f (n = i; β , N) ≡ N![i!•(N − i)!]−1β i(1 − β)N−i is the
probability of i successes. The only unknown determinant of
expected welfare is β , so the state space S indexes the feasible
values of β . Specifically, βs ≡ Ps[y(b) = 1].

It is reasonable in this setting to conjecture that admissible
treatment rules should be ones in which the fraction of the
population allocated to treatment B increases with n. It turns
out that the admissible treatment rules are a simple subclass of
these rules. A theorem of Karlin and Rubin (1956) shows that
the admissible rules are the monotone treatment rules. Monotone
rules assign all persons to the status quo if the experimental
success rate is below some threshold and all to the innovation
if the success rate is above the threshold. Thus, δ is admissible if
and only if

δ(n) = 0 for n < n0, (9a)
δ(n) = λ for n = n0, (9b)
δ(n) = 1 for n > n0, (9c)

for some 0 ≤ n0 ≤ N and 0 ≤ λ ≤ 1.
The collection of monotone treatment rules is a mathemati-

cally “small” subset of the space of all feasible treatment rules.
Nevertheless, it still contains a broad range of rules. These
include the following:

Data-Invariant Rules: These are the rules δ(•) = 0 and
δ(•) = 1, which assign all persons to treatment A or B, respec-
tively, whatever n may be.

Empirical Success Rule: An optimal treatment rule allocates
all persons to treatment A if β <α and all to B if β >α. The
empirical success rule emulates the optimal rule by replacing β

with its sample analog, the empirical success rate n/N.
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Table 1. Minimax-regret rules for small sample sizes

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

n0: threshold sample size

α = 0.10 0 0 0 0 0 0 0 0 0 1 1
α = 0.25 0 0 0 1 1 1 1 2 2 2 2
α = 0.50 0 1 1 2 2 3 3 4 4 5 5
α = 0.75 0 1 2 2 3 4 5 5 6 7 8
α = 0.90 0 1 2 3 4 5 6 7 8 8 9

λ: threshold allocation

α = 0.10 0.9 0.67 0.52 0.41 0.32 0.26 0.18 0.09 0 0.89 0.78
α = 0.25 0.75 0.36 0.17 0.93 0.67 0.42 0.18 0.93 0.67 0.43 0.18
α = 0.50 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5
α = 0.75 0.25 0.64 0.83 0.07 0.33 0.58 0.82 0.07 0.33 0.57 0.82
α = 0.90 0.1 0.33 0.48 0.59 0.68 0.74 0.82 0.91 1 0.11 0.22

Minimax regret value

α = 0.10 0.09 0.067 0.052 0.041 0.033 0.027 0.022 0.019 0.017 0.017 0.017
α = 0.25 0.19 0.09 0.052 0.039 0.038 0.035 0.03 0.027 0.027 0.025 0.023
α = 0.50 0.25 0.063 0.063 0.044 0.044 0.035 0.035 0.03 0.03 0.027 0.027
α = 0.75 0.19 0.09 0.052 0.039 0.038 0.035 0.03 0.027 0.027 0.025 0.023
α = 0.90 0.09 0.067 0.052 0.041 0.033 0.027 0.022 0.019 0.017 0.017 0.016

Source: Manski (2007, Table 12.1).

Bayes Rules: The form of the Bayes rule depends on the
prior subjective distribution placed on β . Consider the class of
Beta priors, which form the conjugate family for a Binomial
likelihood. Let (βs, s ∈ S) = (0, 1) and let the prior be Beta
with parameters (c, d). Then, the posterior mean for β is (c +
n)/(c + d + N). The resulting Bayes rule is

δ (n) = 0 for (c + n) / (c + d + N) < α, (10a)

δ (n) = λ for (c + n) / (c + d + N) = α, where 0 ≤ λ ≤ 1,
(10b)

δ (n) = 1 for (c + n) / (c + d + N) > α. (10c)

Maximin Rule: Minimum expected welfare for rule δ is

min
s∈S

W(δ, Ps, N) = α + min
s∈S

(βs − α)Es[δ(n)]. (11)

Es[δ(n)] >0 for all βs >0 and for all monotone rules except δ(•)
= 0. When S contains states with βs <α, the maximin rule is δ(•)
= 0. Thus, the maximin rule ignores the trial data on treatment
response, whatever they may turn out to be. This illustrates the
Savage (1951) statement that using the maximin rule can induce
one to entirely ignore available sample data.

Minimax-Regret Rule: The regret of rule δ in state s is

max(α, βs) − {α + (βs − α)Es[δ(n)]}
= (βs − α){1 − Es[δ(n)]}1[βs ≥ α]

+(α − βs)Es[δ(n)] × 1[α ≥ βs]. (12)

Thus, regret is the mean welfare loss when a member of the
population is assigned the inferior treatment, multiplied by the
expected fraction of the population assigned this treatment. The
minimax-regret rule does not have an analytical solution, but it
can be determined numerically. When all values of β are feasible,
the minimax-regret rule is well approximated by the empirical
success rule.

3.2.3. Numerical Computation of the Minimax-Regret
Rule for Small Samples

Manski (2007, Table 12.1) reports numerical computations of
the minimax-regret rule for specified values of α and N when
all values of β are feasible; that is, when (βs, s ∈ S) = [0, 1].
I reproduce the findings here in Table 1 The top two panels
display the value of (n0, λ) for this rule. The third panel displays
the value of minimax regret.

The top panel of the table shows that the threshold n0 of
experimental successes for allocation of persons to treatment B
increases with the sample size and with the success probability
of treatment A. The inequality |n0 − αN|≤ 1 holds everywhere
in the table. Thus, the minimax-regret rule is well approximated
by an empirical success rule.

The third panel shows that the value of minimax regret
decreases by roughly an order of magnitude as the sample size
increases from to 10. For example, when α = 0.50, it falls from
0.25 to 0.027. Thus, even a sample size as small as 10 suffices to
make maximum regret quite small.

3.3. Designing Trials to Enable Near-Optimal Treatment
Choice

From the perspective of treatment choice, an ideal objective
for the design of trials would be to collect data that enable
subsequent implementation of an optimal treatment rule in the
patient population of interest; that is, a rule for use of trial
data that always selects the best treatment, with no chance
of error. Optimality is too strong a property to be achievable
with finite sample size. However, near-optimal rules—ones with
small maximum regret—exist when classical trials are large
enough.

Manski and Tetenov (2016) investigated trial design that
enables near-optimal treatment choices. It is shown that, given
any ε >0, ε-optimal rules exist when trials have large enough
sample size. An ε-optimal rule has expected welfare, across
repeated samples, within ε of the welfare of the best treatment
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Table 2. Minimum sample sizes per treatment enabling ε-optimal treatment choice:
binary outcomes, two treatments, balanced designs

ε ES rule One-sided 5% z-test One-sided 1% z-test

0.0 145 3488 7963
0.03 17 382 879
0.05 6 138 310
0.10 2 33 79
0.15 1 16 35

Source: Manski and Tetenov (2016, Table 1).

in every state of nature. Equivalently, it has maximum regret no
larger than ε.

The article considers trials that draw predetermined num-
bers of subjects at random within groups stratified by covari-
ates and treatments. It reports exact results for cases of two
treatments and binary outcomes; see Section 3.3.1 below for
a summary. It gives sufficient conditions on sample sizes that
ensure existence of ε-optimal treatment rules when there are
multiple treatments and outcomes are bounded. These condi-
tions are obtained by application of large deviations inequalities
to evaluate the performance of empirical success rules.

Choosing sample size to enable existence of ε-optimal treat-
ment rules requires specification of a value for ε. The selected
ε determines how much deviation from optimality a decision
maker is willing to tolerate when making treatment choices. The
value of ε should be specified by clinical researchers concerned
with patient care rather than by some universal convention.
Clinical researchers may, perhaps, find it congenial to let ε

equal the minimum clinically important difference (MCID) in the
average treatment effect comparing alternative treatments.

Medical research has long distinguished between the statisti-
cal and clinical significance of treatment effects. While the idea
of clinical significance has been interpreted in various ways,
many writers call an average treatment effect clinically signifi-
cant if its magnitude is greater than a specified value deemed
minimally consequential in clinical practice. International Con-
ference on Harmonisation (1999) put it this way (p. 1923): “The
treatment difference to be detected may be based on a judgment
concerning the minimal effect which has clinical relevance in
the management of patients.”

3.3.1. Findings with Binary Outcomes, Two Treatments,
and Balanced Designs

Determination of sample sizes that enable near-optimal treat-
ment is simple in settings with binary outcomes (coded 0 and
1 for simplicity), two treatments, and a balanced design which
assigns the same number of subjects to each treatment group.
Manski and Tetenov (2016, Table 1), reproduced here as Table 2,
provides exact computations of the minimum sample size that
enables ε-optimality when a clinician uses one of three different
treatment rules, for various values of ε.

The first column shows the minimum sample size (per treat-
ment arm) that yields ε-optimality when a clinician uses the
empirical success (ES) rule to make a treatment decision. The
ES rule chooses the treatment with the better average outcome in
the trial. The rule assigns half the population to each treatment
if there is a tie. It is known that the ES rule minimizes maximum

regret in settings with binary outcomes, two treatments, and
balanced designs (Stoye 2009).

The second and third columns display the minimum sample
sizes that yield ε-optimality of rules based on one-sided 5 and
1% hypothesis tests. Decisions made with these tests take the
two treatments to be a status quo and an innovation, choosing
the innovation if the estimated treatment effect is positive and
statistically significant. There is no consensus on what hypoth-
esis test should be used to compare two proportions. Results
are reported based on the widely used one-sided two-sample
z-test, which is based on an asymptotic normal approximation
(Fleiss 1973).

The findings are remarkable. A sample as small as two obser-
vations per treatment arm makes the ES rule ε-optimal when
ε = 0.1 and a sample of size 145 suffices when ε = 0.01. The
minimum sample sizes required for ε-optimality of the test
rules are orders of magnitude larger. If the z-test of size 0.05 is
used, a sample of size 33 is required when ε = 0.1 and 3488
when ε = 0.01. The sample sizes must be more than double
these values if the z-test of size 0.01 is used. See Manski and
Tetenov (2016) for discussion of the factors that underlie these
findings.

3.3.2. Implications for Practice
Based on their exact calculations and analytical findings using
large-deviations inequalities, Manski and Tetenov conclude that
sample sizes determined by clinically relevant near-optimality
criteria tend to be much smaller than ones set by conventional
statistical power criteria. Reduction of sample size relative to
prevailing norms can be beneficial in multiple ways. Reduc-
tion of total sample size can lower the cost of executing trials,
the time necessary to recruit adequate numbers of subjects,
and the complexity of managing trials across multiple centers.
Reduction of sample size per treatment arm can make it feasible
to perform trials that increase the number of treatment arms
and, hence, yield information about a wider variety of treat-
ment options.

4. Conclusion

Science does not always progress monotonically. There are times
when important, even fundamental, ideas are discovered and
receive attention but then are neglected. This has occurred with
statistical decision theory, which received considerable attention
in the middle of the twentieth century but was largely forgotten
by the century’s end. A revival in the context of treatment choice
began in the early 2000s and has been gathering force. I hope
that the growing dissatisfaction of statisticians with ritual appli-
cations of hypothesis testing, exemplified by the ASA Statement
in Wasserstein and Lazar (2016), will encourage statisticians to
relearn statistical decision theory and use it when studying not
only treatment choice with trial data but decision making with
sample data more generally.

Acknowledgment

The author is grateful to the Editors and reviewers for their comments.



www.manaraa.com

304 C. F. MANSKI

References

Berger, J. (1985), Statistical Decision Theory and Bayesian Analysis (2nd ed.),
New York: Springer. [298]

Berger, J. (2006), “The Case for Objective Bayesian Analysis,” Bayesian
Analysis, 1, 385–402. [298]

Canner, P. (1970), “Selecting One of Two Treatments When the Responses
Are Dichotomous,” Journal of the American Statistical Association, 65,
293–306. [299]

Cheng, Y., Su, F., and Berry, D. (2003), “Choosing Sample Size for a Clinical
Trial Using Decision Analysis,” Biometrika, 90, 923–936. [299]

DeGroot, M. (1970), Optimal Statistical Decisions, New York: McGraw-Hill.
[299]

Dominitz, J., and Manski, C. (2017), “More Data or Better Data? A Statisti-
cal Decision Problem,” Review of Economic Studies, 84, 1583–1605. [299]

Ferguson, T. (1967), Mathematical Statistics: A Decision Theoretic Approach,
San Diego, CA: Academic Press. [298,299]

Fisher, L., and Moyé, L. (1999), “Carvedilol and the Food and Drug Admin-
istration Approval Process: An Introduction,” Controlled Clinical Trials,
20, 1–15. [297]

Fleiss, J. (1973), Statistical Methods for Rates and Proportions, New York:
Wiley. [303]

Garthwaite, P., Kadane, J., and O’Hagan, A. (2005), “Statistical Methods for
Eliciting Probability Distributions,” Journal of the American Statistical
Association, 100, 680–701. [298]

Higgings, J., and Green, S. (eds.) (2011), Cochrane Handbook for Systematic
Reviews of Interventions, Version 5.1.0, The Cochrane Collaboration,
available at http://handbook-5-1.cochrane.org. [296]

Hirano, K., and Porter, J. (2009), “Asymptotics for Statistical Treatment
Rules,” Econometrica, 77, 1683–1701. [299,300]

Hodges, E., and Lehmann, E. (1950), “Some Problems in Minimax Point
Estimation,” Annals of Mathematical Statistics, 21, 182–197. [299]

International Conference on Harmonisation, ICH E9 Expert Working
Group (1999), “Statistical Principles for Clinical Trials: ICH Harmonized
Tripartite Guideline,” Statistics in Medicine, 18, 1905–1942. [297,303]

Ioannidis, J. (2005), “Why Most Published Research Findings Are False,”
PLoS Medicine, 2, 696–701. [296]

Karlin, S., and Rubin, H. (1956), “The Theory of Decision Procedures for
Distributions with Monotone Likelihood Ratio,” Annals of Mathematical
Statistics, 27, 272–299. [301]

Kitagawa, T. and Tetenov, A. (2018), “Who Should be Treated? Empirical
Welfare Maximization Methods for Treatment Choice,” Econometrica,
86, 591–616. [299]

Koriat, A., Lichtenstein, S., and Fischhoff, B. (1980), “Reasons for Confi-
dence,” Journal of Experimental Psychology: Human Learning and Mem-
ory, 6, 107–118. [298]

Manski, C. (2003), Partial Identification of Probability Distributions,
New York: Springer. [299]

(2004a), “Statistical Treatment Rules for Heterogeneous Popula-
tions,” Econometrica, 72, 221–246. [299,300]

(2004b), “Measuring Expectations,” Econometrica, 72, 1329–1376.
[298]

(2005), Social Choice With Partial Knowledge of Treatment Response,
Princeton, NJ: Princeton University Press. [299]

(2007a), Identification for Prediction and Decision, Cambridge, MA:
Harvard University Press. [299]

(2007b), “Minimax-Regret Treatment Choice With Missing Out-
come Data,” Journal of Econometrics, 139, 105–115. [299]

Manski, C., and Tetenov, A. (2016), “Sufficient Trial Size to Inform Clinical
Practice,” Proceedings of the National Academy of Sciences, 113, 10518–
10523. [297,299,302,303]

Morgan, G. and Henrion, M. (1990), Uncertainty: A Guide to Dealing
With Uncertainty in Quantitative Risk and Policy Analysis, New York:
Cambridge University Press. [298]

Parmigiani, G. and Inoue, L. (2009), Decision Theory: Principles and
Approaches, New York: Wiley. [298]

Savage, L. (1951), “The Theory of Statistical Decision,” Journal of the
American Statistical Association, 46, 55–67. [298,300,302]

Savage, L. (1971), “Elicitation of Personal Probabilities and Expectations,”
Journal of the American Statistical Association, 66, 783–801. [298]

Schlag, K. (2006), “Eleven Tests Needed for a Recommendation,” European
University Institute Working Paper ECO No. 2006/2. [299,300]

Spiegelhalter, D., Freedman, L., and Parmar, M. (1994), “Bayesian
Approaches to Randomized Trials” (with discussion), Journal of the
Royal Statistics Society, Series A, 157, 357–416. [298,299]

Spiegelhalter, D. (2004), “Incorporating Bayesian Ideas Into Health-Care
Evaluation,” Statistical Science, 19, 156–174. [299]

Stoye, J. (2009), “Minimax Regret Treatment Choice With Finite Samples,”
Journal of Econometrics, 151, 70–81. [299,300,303]

(2012), “Minimax Regret Treatment Choice With Covariates or
With Limited Validity of Experiments,” Journal of Econometrics, 166,
138–156. [299]

Tetenov, A. (2012), “Statistical Treatment Choice Based on Asymmetric
Minimax Regret Criteria,” Journal of Econometrics, 166, 157–165. [299]

U.S. Food and Drug Administration (2010), Guidance for the Use of
Bayesian Statistics in Medical Device Clinical Trials. Available at
https://www.fda.gov/MedicalDevices/ucm071072.htm. [299]

Wald, A. (1950), Statistical Decision Functions, New York: Wiley.
[296,298,299]

Wasserstein, R., and Lazar, N. (2016), “The ASA’s Statement on p-Values:
Context, Process, and Purpose,” The American Statistician, 70, 129–133.
[296,303]



www.manaraa.com

Copyright of American Statistician is the property of Taylor & Francis Ltd and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email articles for
individual use.


	Abstract
	1.  Introduction
	2.  Background
	2.1.  Using Hypothesis Tests to Compare Treatments
	2.1.1.  Example

	2.2.  Principles of Statistical Decision Theory
	2.2.1.  Basic Ideas
	2.2.2.  Decision Criteria
	2.2.3.  Some History, Post Wald


	3.  Recent Work on Statistical Decision Theory for Treatment Choice
	3.1.  Measuring Performance by Maximum Regret
	3.1.1.  Practical Appeal
	3.1.2.  Conceptual Appeal
	3.1.3.  Example

	3.2.  Treatment Choice With Existing Trial Data
	3.2.1.  General Analysis
	3.2.2.  Illustration: Choice Between a Status Quo Treatment and an Innovation When Outcomes Are Binary
	3.2.3.  Numerical Computation of the Minimax-Regret Rule for Small Samples

	3.3.  Designing Trials to Enable Near-Optimal Treatment Choice
	3.3.1.  Findings with Binary Outcomes, Two Treatments, and Balanced Designs
	3.3.2.  Implications for Practice


	4.  Conclusion
	Acknowledgment
	References


